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1 Theoretical Setup

1.1 MHD Equations

∂ρ

∂t
+∇ · (ρu) = 0 (1)

ρ

[
∂u

∂t
+ (u · ∇)u

]
= −∇p+

1

µ
(∇×B)×B (2)

∂B

∂t
= ∇× (u×B) (3)

∇ ·B = 0 (4)

p = p(ρ) = pγ (5)

cs =

√
(
∂p

∂ρ
)s (6)

1.2 Initial Conditions and Perturbation Conditions

In this analysis, only 1 dimension is considered, i.e.

f ∼ f(x, t), ∇ = x̂∂x (7)

The initial perturbation is along y direction and is set as linearly polarized alfvenic perturbation i.e.
for the first order perturbation only u1y and B1y are presented, neither first order u1x nor ρ1 are
presented.
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u = u1 + u2 = u1yŷ + u2xx̂ + u2yŷ + u2zẑ (8)

B = B0 + B1 + B2 = B0x̂ +B1yŷ +B2yŷ +B2zẑ (9)

ρ = ρ0 + ρ2 (10)

2 First Order Linearization

∂ρ1
∂t

+ ρ0
∂u1x

∂x
= 0 (11)

ρ0
∂u1x
∂t

= −c2s
∂ρ

∂x
(12)

ρ0
∂u1y
∂t

=
B0

µ
∂xB1y (13)

∂B1y

∂t
= B0∂xu1y (14)

ρ0
∂u1z
∂t

=
B0

µ
∂xB1z (15)

∂B1z

∂t
= B0∂xu1z (16)

Together (11)-(16) forms three groups of decoupled wave equation, with (11)-(12) sound wave, (13)-
(14) Alfven wave (ŷ) and (15)-(16) Alfven wave (ẑ). It is evident that in our case, only (13)-(14)
deserves further consideration, nevertheless, it is worth pointing out that y and z direction decouples
with each other and with x direction, hence we would ignore z direction for the rest of this analysis.

Obviously (13)-(14) yields:

∂2

∂t2
u1y =

B2
0

µρ0

∂2

∂x2
u1y (17)

∂2

∂t2
B1y =

B2
0

µρ0

∂2

∂x2
B1y (18)
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Needlessly to say this yields:

u1y = u1y(x± va0t), B1y = B1y(x± va0t) (19)

where va0 = B0√
µρ0

is the unperturbed alfven wave velocity. And the fluctuation amplitude is related

by:

ũ1y = −< B0 · k̂ >√
µρ0

B̃1y (20)

It is obvious that first order analysis is trivial so we would stop here.

3 Second Order Linearization

Now we will begin second order analysis

∂ρ2
∂t

+ ρ0
∂u2x
∂x

= 0 (21)

ρ0
∂u2x
∂t

= −c2s
∂ρ2
∂x
− ∂

∂x

(
B2

1

2µ

)
(22)

ρ0
∂u2y
∂t

=
B0

µ
∂xB2y (23)

∂B2y

∂t
= B0∂xu2y (24)

Obviously the second order alfvenic perturbation in y direction is trivial. We will hence focus on
(21)-(22) for the rest of this analysis. Note that there is an untrivial new term in the sound wave
perturbation (22), which is ∂x(B2

1/2µ)

Equations (21)-(22) will merge into:

∂2ρ2
∂t2

− c2s
∂2ρ2
∂x2

=
∂2

∂x2

(
B2

1

2µ

)
(25)

Note that the right-hand-side of this equation is the magnetic pressure, effectively a source term.

Before proceeding any further, for comparison, we shall discuss the second order analysis of sound
wave for a little bit. Similar equation yields from second order analysis of sound wave, which is:

∂2ρ2
∂t2

− c2s
∂2ρ2
∂x2

=
c2s
ρ0

(

G︷ ︸︸ ︷
1 +

ρ0
cs

dcs
dρ

)
∂2ρ21
∂x2

=
∂2

∂x2
(ρ0v

2
1 +

∂2p

∂ρ2
ρ21
2

) (26)
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Similarly, RHS of both equations are pressure. So what are these equations? They are actually
forced oscillation! Before going back to our analysis of Alfvenic analysis, we shall extract more
information from the sound wave analysis.

The solution of the a normal sound wave is:

ρ1 = ρ1(x± cst), v1 = v1(x± cst) (27)

Given that LHS of (26) is a wave equation with phase velocity of cs, this equation is always resonant.
The solution to (26) is a bit exotic (to me):

ρ2 =
cst

2ρ0
G
∂ρ21
∂x

=
cst

2ρ0
(1 +

ρ0
cs

dcs
dρ

)
∂ρ21
∂x

(28)

Note the t in (28), ρ2 grows linearly with respect to time. Hence this is an unstable solution, which
leads to the formation of hydrodynamic shock. Now we shall return to our analysis of alfven wave.

4 Solution to Second Order 1-D Linearly Polarized Alfvenic
Fluctuation

Now return to (25)
∂2ρ2
∂t2

− c2s
∂2ρ2
∂x2

=
∂2

∂x2

(
B2

1

2µ

)

Note that B1 = B1(x−va0t) hence there are two completely different cases for (25). The trivial case
is when cs 6= va, the solution to (25) is a solution to forced oscillation (ignore damping in our case).
The non-trivial case is when cs = va, the forced-oscillation resonates. In this case, the solution will
share the same form with the sound wave’s. We shall discuss the trivial case first and then the
non-trivial case.

4.1 Non-Resonant Solution

Take B1 = B̃1ycos[k(x− va0t)] and guess ρ2 = ρ̃2cos[2k(x− va0t)]. The solution to (25) yields:

ρ2 = − B̃1y
2

4µ(c2s − v2a0)
cos[2k(x− va0t)] (29)

From (21):

∂ρ2
∂t

+ ρ0
∂u2x
∂x

= 0

We yield:

u2x = − va0B̃1y
2

4µρ0(c2s − v2a0)
cos[2k(x− va0t)] (30)
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One of the most important features of the wave steepening is its waveform deformation and the
subsequent formation of discontinuity. The actual phase velocity of 1-D Alfven wave is vϕ = ux+va.
Hence the disturbance of phase velocity is δvϕ = u2x + δva. Disturbance of va is:

va =
B0√
µρ

=
B0√
µρ0

[
1− 1

2

ρ2
ρ0

+ o(
ρ2
ρ0

)

]
≈ va0(1− 1

2

ρ2
ρ0

) (31)

This yields:

δvϕ = − va0B̃1y
2

8µρ0(c2s − v2a0)
cos[2k(x− va0t)] (32)

Looking at (32) we could see that the shape of the wave steepening is determined by sgn(c2s − v2a0).
A more detailed analysis would be conducted in the simulation results section.

4.2 Resonant Solution

For the non-trivial case (va = cs), we will substitute cs with va. (25) now becomes:

∂2ρ2
∂t2

− v2a0
∂2ρ2
∂x2

=
∂2

∂x2

(
B2

1

2µ

)
(33)

with

B1 = B1(x− va0t) = B1(ϕ) (34)

The solution is:

ρ2 = − t

4µva0

∂B2
1

∂ϕ
(35)

Again with (21), yields;

u2x =
B2

1

4µρ0va0
− t

4µρ0

∂B2
1

∂ϕ
(36)

There are two notable features here:

• ρ2, u2x grows linearly with respect to time in same speed.

• Amplitude of u2x and ρ2 has a factor of va0/ρ0 difference.

• u2x has an offset (proportional to B2
1)

We shall verify these two features together with the features of non-resonant case using simulation
in the following section.
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5 Simulation Results

5.1 Non-Resonant Case

Let’s start by verifying the behavior of B1y, δρ2 and u2x. Figure 1 is a time elapse of B1y, δρ2 and
u2x at fixed point x = 0.

Figure 1: Time elapse of B1y, δρ2 and u2x at fixed point x = 0

It can be seen from figure 1 that result of second order analysis (29) and (30) captures features
of frequency and amplitude with reasonable accuracy. For example, B1y and δρ2 are supposed
to in phase with each other (they overlap each other in figure 1). Moreover, B1y and δρ2 are
also supposed to have amplitude of B2

1y and have frequency doubled of B1y’s frequency, which is
captured incredibly well as can be found in figure 1. However, based on the result of the second
order analysis, the fluctuation amplitude of B1y and δρ2 are supposed to stay constant, as opposed
to the simulation result, which obviously comprise a lower order wave packet. It is worth noting that
the wave steepening speed is over 2 times faster than the speed expected from a order of magnitude
analysis of vϕ. This might be caused by the unexpected amplitude fluctuation of both B1y and δρ2.
One might guess this comes from higher order effects.

(a) B0 = 1.0, t = 20ta
Cliff at left

(b) B0 = 1.0, t = 20ta
Cliff at right

Figure 2: Different Shape of Steepening

From (32)

δvϕ = − va0B̃1y
2

8µρ0(c2s − v2a0)
cos[2k(x− va0t)]

we can estimate the shape of the steepening by sgn(v2a − c2s). When v2a < c2s (Note c2s = γp0/ρ0 =
5/3, v2a0 = B0/

√
µρ0 = B0), i.e. δvϕ < 0, the phase velocity at ϕ = k(x− va0t) = 0 is smaller than
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the phase velocity at ϕ = k(x− va0t) = π/2. The phase velocity difference is:

∆vϕ = vϕ(ϕ = 0)− vϕ(ϕ = π/2) = 2 ∗ − va0B̃1y
2

8µρ0(c2s − v2a0)
(37)

As a result, the peak of B1y will move left relative to the zeros and forms a cliff (discontinuity) at
the left side as a consequence (See Figure 2.a). Similar analysis when v2a > c2s will yield the result
that a cliff (discontinuity) will be form at the right side (See Figure 2.b).

5.2 Resonant Case

To test the correctness of (35), it is convenient to take a average of ρ2 (in the following analysis,
assume B1 = B̃1ycos(kϕ) = B̃1ycos[k(x− va0t)]):

< |ρ2| >x= − t

4µva0
< |∂B

2
1

∂ϕ
| >x=

tB̃2
1y

4µva0
∗ k∗ < |sin2ϕ| >ϕ=

tB̃2
1y

4µva0
∗ k ∗ 2

π
(38)

Obviously < |ρ2| >x is estimated to increase with time linearly. To produce the resonant case, B0

is set to 1.291 (
√
γ =

√
5/3 ≈ 1.291), an example result is presented in Figure 3.a and Figure 3.b.

In this run B̃1y is 0.01 and k is 4π. The result displays an incredibly clear and stable linear growth
with respect to time (both in 3.a and the wave packet in 3.b). Both ρ2 and u2y saturate at about 15
ta and hence this resonance seems to be an amazingly fast way to convert magnetic energy to
kinetic energy. To compare the theoretical growth rate and the simulated growth rate, a linear fit
is done using the data of the first 5 Alfven time (ta = Ly/va0) and the result is bsim = 1.505× 10−4.

For comparison, the theoretical growth rate is (B̃1y = 0.01, k = 4π, µ = 1, va0 = B0/
√
µρ0 =

√
γ):

bthe = 1.549× 10−4. The relative difference between the theoretical growth rate and the simulation
growth rate is about 3%, which may come from higher order effect. More simulation runs shows
that this growth rate error changes with regard to k and B̃1y, further investigation should be taken
on this.

(a) δρ2,rms (b) Time elapse of B1y, δρ2 and u2x

Figure 3: δρ2,rms and Time elapse of B1y, δρ2 and u2x at fixed point x = 0 (first 5ta), Small

amplitude B̃1y = 0.01

Note that in figure 3b, the amplitude of u2x is slightly larger than δρ and the difference increases
with time. This comes from a factor of va0/ρ0 ≈ 1.291 difference of growing term between u2x and
δρ in (35) and (36).

The offset of u2x is not obvious in Figure 3 (Small Amplitude Wave) but can be rather obvious if
we increase B̃1y. Figure 4 is a large amplitude version of this simulation (resonance). In Figure 4,

B̃1y is set to 0.5. It can be seen in 4.b that there is an very obvious symmetry breaking in u2x and
ρ2, even though the sign is different from what is expected from (36). And it is worth noting that
the growth saturates extremely fast — at 0.4ta!

7



(a) δρ2,rms (b) Time elapse of B1y, δρ2 and u2x

Figure 4: δρ2,rms and Time elapse of B1y, δρ2 and u2x at fixed point x = 0, Large Amplitude

(B̃1y = 0.5)

6 Movie Links

Time-Lapse Movie Link:

Small Amplitude Resonance

Large Amplitude Resonance
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https://youtu.be/G9m0q7dJaEw
https://youtu.be/RxTNQrV2NAI


7 Supplement Materials

7.1 Detailed Analysis on Resonance Growth Rate

A more detailed analysis is conducted concerning the linear growth rate in resonance situation. A
linear growth rate estimated using sliding window is presented in figure 5. In this case, the magnetic
field perturbation B̃1y is 0.01 and the background magnetic field B0 is 1.291 (resonance condition).
The first 1 ta is taken out in figure 3.a and ran again with finer time resolution (0.001 ta). After that,
in order to estimate the true growth rate of δρ2,rms, a sliding window is used to demonstrate the
local oscillation of growth rate due to the edge effect introduced by the finite size of simulation box.
And lastly, a period is selected manually to estimate the averaged growth rate with the following
two criteria: (1) The key feature of oscillation shows no or minimum alternations in the selected
period. (2) The period is near the start of this simulation (because the growth rate is expected to
decrease as δρ2,rms increases, due to conservation of energy). The result is the dashed green line in
figure 5 and for comparison, the theoretical result is shown as the red dashed line.

Figure 5: Resonance growth rate estimated from sliding window. Sliding window size is 100 data
points, which in this case, is 0.1 ta.

As can be found in figure 5, due to the edge effect of the simulation box introduced during the
calculation of δρ2,rms in (38) (or maybe it’s something else? Might not be this trivial), the growth
rate oscillates in a manner in accordance with sin or cos (not surprisingly). The green dashed line
indicates the averaged growth rate estimated using the period spanned by itself. Result shows that
the simulation result coincides nearly perfectly with the theoretical result with a relative error far
less than 1%. This is expected due to the fact that during resonance, second order effect dominates
as opposed to the non-resonant case, the behavior of second order effects themselves has a phase
shift and numerous other effects that can significantly alter the behaviors of themselves.
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