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Centrifugal buoyancy affects all rotating turbulent convection phenomena, but is conventionally ignored
in rotating convection studies. Here, we include centrifugal buoyancy to investigate what we call Coriolis-
centrifugal convection (C3), characterizing two so far unexplored regimes, one where the flow is in
quasicyclostrophic balance (QC regime) and another where the flow is in a triple balance between pressure
gradient, Coriolis and centrifugal buoyancy forces (CC regime). The transition to centrifugally dominated
dynamics occurs when the Froude number Fr equals the radius-to-height aspect ratio γ. Hence, turbulent
convection experiments with small γ may encounter centrifugal effects at lower Fr than traditionally
expected. Further, we show analytically that the direct effect of centrifugal buoyancy yields a reduction of the
Nusselt number Nu. However, indirectly, it can cause a simultaneous increase of the viscous dissipation
and thereby Nu through a change of the flow morphology. These direct and indirect effects yield a net Nu
suppression in the CC regime and a net Nu enhancement in the QC regime. In addition, we demonstrate that
C3 may provide a simplified, yet self-consistent, model system for tornadoes, hurricanes, and typhoons.
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Rotating turbulent thermal convection is the fundamental
process underlying a variety of geo- and astrophysical flow
phenomena, including deep ocean convection, planetary
atmospheric flows, and liquid metal core dynamics.
Rotating Rayleigh–Bénard convection (RRBC) serves as
the paradigm model system; it constitutes a fluid heated
from below and cooled from above that is rotated about its
vertical axis. Hence, the principal external forces governing
the equations of motions are the Coriolis, gravitational, and
centrifugal buoyancy forces [1,2]. Traditionally, centrifugal
buoyancy is disregarded in RRBC studies [3] based on the
claim that it is negligible in natural settings. Exceptions
exist but are mainly concerned with the onset properties
[2,4–8], cf. [9] or stably stratified systems [10].
Here, we argue that centrifugal buoyancy warrants

inclusion because, like gravity, it drives convective
motions: Cold, denser fluid moves radially away from
the axis of rotation, and warm, less dense fluid moves
radially towards it. Further, it breaks the symmetry of the
system and thereby changes the range of potential behav-
iors. Studying Coriolis-centrifugal convection (C3)—that
is RRBC with the full inertial acceleration taken into
account—is also exceedingly important for today’s state-
of-the-art experimental devices that aim to characterize
geostrophic turbulence [11]. These experiments must often
rotate slower than their actual technical capabilities in order
to keep the centrifugal buoyancy small. However, it is not
known when centrifugal dynamics start to affect important
output parameters such as the heat transport and the flow
morphologies, nor in which ways those may be altered.
In this Letter, we predict the uncharted regime transitions

of C3 using scaling arguments and provide an analytical

derivation for the heat transport. Our results are verified
and corroborated by direct numerical simulations (DNS),
which show a wide range of geophysically interesting flow
behaviors.
The governing equations in nondimensional form are the

incompressible Navier–Stokes equations augmented by the
temperature equation, viz.,

Dtu ¼ −∇pþ
ffiffiffiffiffiffiffiffiffiffiffi
Pr

Ra γ3

s
∇2uþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pr γ

RaEk2

r
u × êz

þ Têz − FrTrêr; ∇ · u ¼ 0; ð1aÞ

DtT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

Ra Pr γ3

s
∇2T: ð1bÞ

The temperature T is scaled by the imposed adverse
temperature difference Δ, lengths by the radius of the
convection vessel R, velocity u by

ffiffiffiffiffiffiffiffiffiffiffiffi
gαRΔ

p
, where α

denotes the isobaric expansion coefficient and g is the
gravitational acceleration, and time t by R=

ffiffiffiffiffiffiffiffiffiffiffiffi
gαRΔ

p
, and

reduced pressure p by ρgαRΔ, where ρ is the mean density.
The sidewall is insulated, and the top and bottom are
isothermal with T top ¼ −0.5 and Tbot ¼ 0.5, respectively.
The velocity boundary conditions are no slip on all walls.
The nondimensional control parameters are the Rayleigh
number Ra ¼ αgΔH3=ðκνÞ, Prandtl number Pr ¼ ν=κ,
Ekman number Ek ¼ ν=ð2ΩH2Þ, Froude number Fr ¼
Ω2R=g, and aspect ratio γ ¼ R=H, where κ is the thermal
diffusivity, ν is the kinematic viscosity, Ω the rotation rate,
and H is the height of the vessel.
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Equations (1) are solved numerically in cylindrical
coordinates (r, ϕ, z) using the fourth order finite volume
code GOLDFISH [12]. In our DNS, we can independently
vary Fr and the gravitational Rossby number Rok ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEk2Ra= PrÞ

p
and even set them to 0 or ∞, respectively,

while the other remains finite. This numerical flexibility,
which is essential to map out the broadest possible
parameter space, does not exist in the laboratory where
Fr and Rok must covary. A total number of 160 DNS are
presented here, conducted with Pr ¼ 6.52, Ra ¼ 107 and
108, 0.0125 ≤ Rok ≤ ∞, 0 ≤ Fr ≤ 10 in a cylindrical tank
with γ ¼ 0.365, and a small subset with γ ¼ 1.5 [13].
Figure 1 shows characteristic flow fields for the inves-
tigated parameter space. (See the movies and Fig. 4 in
the Supplemental Material [14] for a broader array of
visualizations.)
We first determine when fundamental changes in the

dynamics occur in the C3 system based on time scale
arguments. Relevant are the Coriolis time scale,
τΩ ¼ 1=ð2ΩÞ, the gravitational buoyancy (free-fall) time
scale, τff ¼ H=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
αΔgH

p
, and the centrifugal buoyancy

time scale, τcb ¼ R=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αΔΩ2R2

p
.

If the flow is three-dimensional (3D), the dynamics
happen on time scales τff ≪ τΩ ∧ τff ≪ τcb. On the other

hand, if the flow is quasigeostrophic (QG), such that the
primary force balance is between the pressure gradient and
Coriolis forces, we have τΩ ≪ τff ∧ τΩ ≪ τcb. The ratio of
τΩ and τff yields the gravitational Rossby number

Rok ¼
τΩ
τff

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
αgΔH

p
2ΩH

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ek2Ra
Pr

r
; ð2Þ

where k denotes the alignment of the rotation and gravita-
tional buoyancy vectors. We estimate the transition value,
fRok, from 3D toQG flow using the criterion ofKing et al. [3],

6≲ Pr3=4Ra1=4fRo3=2k ≲ 20: ð3Þ

This fRok transition prediction, marked by the hatched area
in Fig. 2(a), works well for our Pr and Ra values and is in
agreement with other studies [15].
Similarly, if the flow is quasicyclostrophic (QC), i.e., the

primary force balance is between the pressure gradient and
centrifugal buoyancy, the characteristic dynamical scale
is τcb ≪ τΩ ∧ τcb ≪ τff. This gives a centrifugal Rossby
number [16]

Ro⊥ ¼ τΩ
τcb

¼
ffiffiffiffiffiffiffi
αΔ

p

2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ek2RaFr
Pr γ

s
¼ Rok

ffiffiffiffiffi
Fr
γ

s
; ð4Þ

where ⊥ denotes the perpendicularity of the rotation and
centrifugal buoyancy vectors. Based on the similarity of
these two Rossby number definitions, we hypothesize here
that the transitional fRo⊥ also obeys Eq. (3), as indicated by
the crosshatched area in Fig. 2(a).
We predict that the transition to centrifugally dominated

flows occurs approximately where the two transition
Rossby numbers are equal, corresponding to τff ≃ τcb
[18]. Crucially, this equivalence occurs at the intersection
between the fRok and fRo⊥ lines in Fig. 2 when

fRok ≃ fRo⊥ ⇔ Fr ≃ γ: ð5Þ

Note, that Eq. (5) can be equivalently expressed dimen-
sionally as H ¼ g=Ω2, and this holds irrespective of the
specific value of Eq. (3). This regime transition implies,
nonintuitively, that centrifugal buoyancy effects will be
strongest in low-γ vessels.
For Fr > γ, there exists an important subregime where

ðτcb ∼ τΩÞ ≪ τff. It is characterized by a triple balance
between pressure gradient, Coriolis, and centrifugal force
(CC), which is called gradient wind balance [19].
We verify these predictions using the dimensionless heat

flux, expressed by the Nusselt number Nu, that has proven
to be an excellent tool to indicate regime transitions. The
results presented here are for γ ¼ 0.365; a small set of DNS
with γ ¼ 1.5 is provided in Fig. 5 of the Supplemental

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 1. Flow fields for Ra ¼ 108, Pr ¼ 6.52, γ ¼ 0.365: (a–d)
temperature T, (e–h) side and top view of the velocity vectors
scaled in size by velocity magnitude and colored by azimuthal
velocity uϕ. (a,e) Rok ¼ ∞, Fr ¼ 2.0 (QC); (b,f) Rok ¼ 1.0,
Fr ¼ 1.0 (QC); (c,g) Rok ¼ 0.05, Fr ¼ 10.0 (QC/CC); (d,h)
Rok ¼ 0.05, Fr ¼ 2.0 (CC). Note that the three rings for (h) at
the top and bottom are located at approximately the same radial
positions. Corresponding movies can be found in the Supple-
mental Material [14].
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Material [14] as supporting evidence. The relative deviation
of Nu from the value without rotation Nu00 ≡ NuðFr ¼
Ro−1k ¼ 0Þ, is shown in Fig. 2(a). Indeed, Rok, Ro⊥, and γ

adequately describe the borders between different heat
transfer regimes [20]. Furthermore, our regime diagram
resembles those found in similarly anisotropic geophysical
systems (e.g., rotating, stably-stratified dynamics described
by Cushman-Roisin and Beckers [21], Fig. 11.6).
For Fr < γ, the heat transport exhibits the well-known

characteristics of Coriolis-affected convection at moderate
Pr. With decreasing Rok, it is initially enhanced due to
Ekman pumping in the 3D regime, and then it is suppressed
due to the Taylor Proudman effect in the QG regime [3]. For
Fr > γ, i.e., when centrifugal buoyancy is significant, the
two so-far largely unexplored QC and CC regimes show a
strong heat transfer increase and decrease, respectively.

Figure 2(b) presents the relative deviation between Nu
and Nu0 ≡ NuðFr ¼ 0Þ. The quantity ðNu–Nu0Þ=Nu0 dif-
ferentiates the effects of Coriolis and centrifugal buoyancy
forces on the heat transport. Thus, it allows us to visualize
the difference in Nu between fully-inertial rotating con-
vection (Fr ≠ 0, e.g., laboratory experiments) and cases for
which centrifugal buoyancy has been omitted (Fr ¼ 0, e.g.,
idealized numerical simulations). The results in Fig. 2(b)
confirm the transition prediction (5). Thus, we provide the
experimentally testable prediction that a smaller γ value
will not necessarily lead to weaker centrifugal effects. This
differs substantively from the widespread assumption that
centrifugal effects become important at a fixed estimate of
Fr ¼ 0.05 [3,7] [e.g.], but instead, they set in earlier in low-
γ vessels. Furthermore, we predict that there is an optimal
Ra, according to Eq. (4), along a line of constant Ro⊥ for
every experimental setup. Measuring along this line may
allow one to map out the heat transport for arbitrary rapid
rotation rates with minimal deviations due to centrifugal
buoyancy effects.
To explain the contrasting effect of centrifugal buoyancy,

we scalarly multiply Eq. (1) with u and average over the
entire fluid volume and time. This yields the exact
analytical result

Nu ¼ Pr
γ
hk∇uk2iV;t

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
≡Nuε

þ Fr
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Pr Raγ

p
hurTriV;t|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≡NuFr

þ 1: ð6Þ

For Fr ¼ 0, the well-known relationship between heat flux
and viscous dissipation rate ε is recovered [22] [e.g.]. The
extra term NuFr in Eq. (6) proves that centrifugation has a
direct effect on the heat flux, which is always present.
This distinguishes it from pure Coriolis convection.
Furthermore, NuFr must be negative for sufficiently high
Fr, since the hot flow is radially inwards at the bottom, i.e.,
ur < 0 and T > 0, and the cold flow at the top is radially
outward, ur > 0 and T < 0. This is confirmed by the
phase diagram in Fig. 3(a). The main contribution here is
stemming from the boundary layers, where naturally the
radial velocities and temperature anomalies are highest.
However, the other term, Nuε, counteracts this direct

Froude effect. Thus, there is an indirect effect connected to
a fundamental change in flow morphology. For Ra ¼ 107,
the maximum positive contribution is almost twice as high
in magnitude as the negative effect due to the centrifugality,
as shown in Fig. 3(b). The reason for this is the higher ε
related to stronger gradients in the velocity field, especially
adjacent to the horizontal boundaries.
The flow fields presented in Fig. 1 and in the

Supplemental Material [14] elucidate the fundamental
changes in flow morphology in the QC and CC regimes.
These visualizations show that turbulent C3 is inherently
complex, as it is susceptible to inertial, gravitational, shear,
and baroclinic instabilities [4].

(a)

(b)

FIG. 2. Relative deviations of Nu from (a) nonrotating, non-
centrifugal convection, i.e., with Fr ¼ Ro−1k ¼ 0, and (b) traditional

noncentrifugal convection, i.e., with Fr ¼ 0. The phase diagrams
are based on the DNS conducted at Ra ¼ 107, the used data points
in Fr-Ro−1k space are marked by crosses. In addition, the color-

filled symbols show the results for Ra ¼ 108 using the same color
code, where the stars correspond to the cases presented in Fig. 1.
The horizontal dash-dotted line indicates the bifurcation Rok,
according to Weiss et al. [17]. The black (grey) hatched and
crosshatched area indicate the transition region from the 3D and
QC regimes to the QG and CC regimes based on Ro⊥ and Rok for
Ra ¼ 107ð108Þ. The transition borders are continued with dashed
lines. The vertical solid line marks Fr ¼ γ, the transition from 3D
and QG to the centrifugally dominated regimes QC and CC. For
clarity, hatching and dashed lines are omitted in (b).
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The most common behavior of the Fr ≳ γ flows is a hot
central upwelling, and it is associated with the known
increase of the central temperature [9,23] [e.g.]. This
upwelling is visible in all flow fields in Fig. 1 and most
prominently in Figs. 1(a), 1(e) for Rok ¼ ∞ and Fr ¼ 2.0. In
this case, the primary force balance is cyclostrophic (QC)
and the reduced pressure is essentially parabolic in the radial
direction. Even with no Coriolis force, symmetry breaking
effects suffice to create a retrograde drifting vortex structure
in the upper layer with an azimuthal m ¼ 2 wave number.
For the other cases, Rok is finite and the Coriolis force

also acts on the fluid, leading to thermal winds
[4,9,10,21,24]. Under the assumption of an axisymmetric,
inviscid flow, and also neglecting nonlinearities and any
time dependence, the C3 thermal wind balance reads

∂zuϕ ¼ Rokγ−
1
2ð∂rT þ Frr∂zTÞ: ð7Þ

For Rok ¼ 1.0 and Fr ¼ 1.0 [Figs. 1(b), 1(f)], the primary
force balance is cyclostrophic (QC). That is, the pressure
gradient and centrifugal forces dominate over the Coriolis
force and the strong cyclonic (prograde) wind essentially
follows the isobars. As there is a pronounced central
pressure minimum where the converging hot fluid rises,
the wind has a very small radius of curvature in the lower

part of the cell. In addition, the upward flow is helical due
to the thermal wind. In the upper part of the cell, where
there is a broad pressure high, the flow diverges and
becomes more three-dimensional and can even split into
two warm streams. Hence, this flow is tornadolike both in
appearance and in terms of the underlying physics [25].
When the Coriolis force is stronger, for Rok ¼ 0.05 and

Fr ¼ 10 [Fig. 1(c), 1(h); QC/CC], the flow speed goes
down and the temperature field is steady and axisymmetric,
with a conelike central hot core. The prograde azimuthal
flow is strong in the lower part of the cell and connected to
a pressure minimum, so that an eye in the velocity field
is formed where the flow is quiescent. The retrograde
circulation at the top is localized to the outer rim.
The last case, shown in Figs. 1(d), 1(h) for Rok ¼ 0.05

and Fr ¼ 2, is in the triply balanced CC regime. There is a
wide pressure high at the top; hence, the flow is anticyclonic
(retrograde) and opposed to that is an equally wide pressure
low at the bottomwhere the flow is cyclonic (prograde). This
leads to a strong broadening of the temperature distribution
compared to the columnar vortices found for lower Fr.
Furthermore, concentric ringlike patterns are the prominent
flow feature, resulting from centrifugal instabilities [26].
The last two cases demonstrate that QC and CC flows

can generate eye and secondary eyewall-like structures that
are qualitatively similar to those found in hurricanes and
typhoons [27,28]. We, thus, argue that QC and CC flows
provide new avenues for the dynamically self-consistent
investigation of tornado and tropical cyclone physics.
In sum, our results have substantial implications for the

investigation of rotating convection systems. They suggest
that the geometry of the tank is crucial to determine the
particular regime of Coriolis-centrifugal convection. We
make the testable prediction that the transition to centrifu-
gally dominated convection occurs when Fr ≳ γ, instead of
a fixed absolute Fr value as traditionally assumed. In future
laboratory and numerical studies, we will further vary γ
and make use of other diagnostic tools such as the center
temperature [9,15,23].
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FIG. 4. Supplemental figure to Fig. 1. Shown are ten temperature isosurfaces for Ra = 108,

equidistantly distributed between the top and bottom temperature. The lines mark the regime

transitions as in Fig. 2. Note, that the transition range is relatively broad, thus, flow fields close

to the borders exhibit also minor signatures of the adjacent regime(s).
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FIG. 5. Nusselt number Nu as function of

the Froude number Fr for Ra = 108 and

Ro = 1.0. The blue stars and lines corre-

spond to γ = 0.365, presented in the main

part of the Letter. The magenta circles

and lines correspond to additional simula-

tions conducted at a higher aspect ratio of

γ = 1.502 for Fr ∈ {0, 1.0, 1.5, 4.1}. The

horizontal dashed lines mark Nu(Fr = 0)

and the vertical solid lines the predicted

transition at Fr = γ.


